

Modeling Errors in Taxiing of Commercial Aircraft

Michael D. Byrne

Department of Psychology Rice University byrne@acm.org

Alex Kirlik

Aviation Human Factors
University of Illinois
kirlik@uiuc.edu

Overview

- Background
 - The problem
 - Modeling framework
- Structure of the model
 - Cognitive model
 - Physical and environmental models
- Sources of error
- Work in progress/future extensions
- ACT-R issues

The Problem

- Taxiing (runway <—> gate) is the phase of commercial flight that is least automated
- Since 1972, 11 runway accidents have claimed 719 lives
 - Not counting Milan accident this fall
- Runway incursions have increased 15% per year for the last four years in the U.S. alone
 - The bulk of this increase is attributed to "pilot deviations"

The Study

- Based on NASA Ames studies of flight crews taxiing at Chicago O'Hare (e.g. Hooey, Foyle, Andre, & Parke, 2000)
 - Bad visibility (fog)
 - Fairly high error rate (~22%)
 - 6 crews, 9 runs each, 12 total major errors
 - 2 Communication errors (e.g., wrong taxi route understood)
 - 6 Local decision errors (e.g., decision to turn left when right is correct)
 - 4 Execution errors (e.g., misinterpreting signage)
- Follow-up studies showed expensive technology (EMM, HUD) drastically reduced error rate
 - Cheaper or easier way?

QuickTimeTM and a Cinepak decompressor are needed to see this picture.

General Approach

- Traditional cognitive approaches
 - History of modeling static laboratory tasks
 - Now ready to handle complex, dynamic environments
 - Approximate quantitative models
- Traditional ecological approaches
 - Abstract description of task environment
 - Role of human cognitive (& perceptual-motor) capabilities minimized due to lack of quantitative models
- Our goal: Unify the two approaches
 - Cognitive model informed by environmental analysis

Integration

- Use environmental analysis/model to provide the ACT-R/PM model a realistic environment of operation
 - For example, realistic time constraints based on model of aircraft dynamics
- Use environmental analysis (based in part on SMEs) to:
 - Identify problem-solving and decision-making strategies
 - Set parameters in ACT-R representing the information landscape for those strategies
 - Frequency and recency
 - Success rate and costs

Model Scope

- Model of single individual, the captain, and the environment
 - This is an ACT-R 4.0 model
- Currently, we do not model the FO
- Also, no model of errors resulting from miscommunications between agents
- Does not model low-level control of steering
 - Airport is a series of "rails"

Cognitive Model Overview

Maintenance Goals

- During routine (straight) taxiing, all these goals will regularly be made the focus
- When one of these goals completes, it can return information to the top goal
 - Example 1: If an incursion is detected, it will return a note to the main goal to next push a goal to handle the incursion
 - Example 2: Updating location might determine that there's an intersection coming up, which will return a note to the main goal to deal with it
- Satisfying these goals takes time

Make a Turn Here?

- This can be very simple:
 - If the intersection coming up is a "T" then a turn must be made
 - Otherwise, model generally relies on memory of turns to decide whether to turn
 - Expectancies can play a role here
- This is a potential error source
 - Makeup of errors suggests that this is uncommon as a decision error (only made once), more common as a planning error

Which Turn?

- Model explicitly chooses a strategy for determining which turn to make
- Different strategies have different time demands
- Thus, model is sensitive to environmental constraints
 - Aircraft dynamics
 - Sign placement
 - Taxiway geometry
- Considers time cost and rough success rate information
 - Most accurate strategy given time available (e.g. Payne, et al.)

Turn Decision Strategies

- Strategies available:
 - Remember
 - Fast, increasingly inaccurate
 - Turn toward gate
 - Not quite as fast, surprisingly accurate in most airports
 - Turn which reduces larger of XY distance
 - Moderately fast, much more accurate than you'd think
 - Derive from "map knowledge"
 - Slow
 - High accuracy in principle, but still error-prone
- Buy time and re-assess (brake)

Turn Execution

- Speed in a turn is determined by
 - Turn radius (hard, 90, soft)
 - G-force limitations (guideline is 0.25 g's)
- While we don't model the control movements made by the pilot during the turn, we assume that this requires visual guidance
 - We "lock" the visual system to the relevant yellow line during the turn

Physical Model

- Model of physical aircraft based on
 - Dario's Nissan car simulator
 - Aircraft specifications from Boeing and NASA
 - Adjustments from physics first principles
- This model determines
 - Acceleration
 - Braking
- Because time is such an important resource to the cognitive model, it is critical to get this right

Physical Model Performance

Visual Environment Model

- Used the database from the NASA flight simulator
- Aircraft position and heading used to determine what objects should be visible
 - Yellow lines
 - Signs
 - Distance from each
- Work is in progress on degrading the representation of text at longer distances
 - ACT-R/PM's Vision Module contains a "best guess" mechanism for degraded input
 - This is another potential error source

Task Environment Model

- SME provided us with Jepp charts for other airports with "typical" taxi routes indicated
 - Different airports
 - Near grids: Atlanta, Dallas, SeaTac, Denver
 - More like O'Hare: JFK
 - In between: San Francisco, Miami, Los Angeles
- Discoveries:
 - "XY" heuristic is good across the board
 - "Toward terminal" heuristic is good some places, but not at O'Hare
 - All turns where both heuristics fail, at least one error was made!

Heuristic Effectiveness

Average Route Length

Error Behavior

- Several sources
 - Retrieval failure/mis-retrieval
 - Exacerbated by memory-based workload
 - Use of less accurate strategies to meet time constraints
 - Exacerbated by temporal workload
 - Perceptual failures
- Coverage
 - The decision errors appeared to be at least explained
 - Prediction is difficult
 - Need a priori basis for setting all parameters for all pilots
 - Some execution errors can be modeled

Possible Future Extensions

- Near term
 - Monte Carlo simulations to explore parameter sensitivity
- Already mentioned
 - Degraded perceptual inputs
- Questions to answer
 - Are there other decision strategies? If so, how long do they take and how well do they work?
- Adding FO model
 - Would need more detailed information about FO tasks to help determine behavior of that model

ACT-R Issues: 3D Vision

- Vision Module in RPM originally designed for 2D visual world (e.g. computer screen)
- In some sense, this is still true of a flight simulator, but is a terrible mis-representation
- Augmented visual representation beyond XY position to add "depth" or "distance" attribute
 - Same kinds of operations supported, such as selection based on max value
 - Lack any real notion of occlusion

ACT-R Issues: PG-C

- Decision strategy selection not really guided by PG-C
- Our model explicitly represents our best guess at the average time taken by each turn-selection strategy
 - Model never chooses a strategy that takes longer than the time available to make a decision
- Want highest P given maximum allowable C, so we set production C estimates (by setting <u>b</u>) to be equal, even though this isn't really quite correct

ACT-R Issues: Rapid visual updating

- To model aircraft dynamics correctly, the "world" has to be updated very often
 - Linear approximations to diffeq issues
- This means the visual world changes a LOT
- Rebuilding the entire visicon and figuring out what ought to be marked as "new" each time is tricky
- Basically, we update the plane position and such as often as possible and "lock out" visual upates
 - Every 250 ms or so
- This is not solved to my satisfaction

ACT-R Issues: 4.0 vs. 5.0

- As noted, this is a 4.0 model
- Not 100% clear to me yet what effects a 5.0 port would have
- Speculations:
 - Event-driven system should make device updating better
 - There are probably several places where ACT-R will be "faster" on the basis of asynchronous memory retrieval
 - This is almost certainly good
 - Goal management
 - Goal decay and such is probably OK
 - Makes extensive use of call-return mechanism, which might yield a porting problem

Other credits

- NASA
- Brian Webster
- Michael Fleetwood
- Chris Fick

